Journal of Organometallic Chemistry, 303 (1986) 1-38
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands
Review

```
NIOBIUM ORGANOMETALLIC COMPOUNDS: ANALYSIS AND CLASSIFICATION OF CRYSTALLOGRAPHIC DATA
CLIVE E. HOLLOWAY
Department of Chemistry, York University, 4700 Keele Street, Downsview, Ontario, M3J 1P3, Canada
milan melník
Department of Inorganic Chemistry, Slovak Technical University, CS 81237, Bratislava, Czechoslovakia
(Present address: Department of Chemistry, York University, On sabbatical Leave)
```


CONTENTS

1. INTRODUCTION 2
2. MONONUCLEAR COMPOUNDS 3
A. Monocyclopentadienyl Compounds 3
B. Bis(cyclopentadienyl) Compounds 7
C. Cyclo-octatetraene Compounds 10
3. HETEROBINUCLEAR COMPOUNDS 16
4. HOMOOLIGONUCLEAR COMPOUNDS 22
A. Binuclear Compounds 22
B. Trinuclear Compounds 25
C. Tetranuclear Compounds 31
5. CONCLUSIONS 32
6. REFERENCES 36

ABBREVIATIONS
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{PS}_{2}$ diethyldithiophosphate
$\mathrm{C}_{8} \mathrm{H}_{8} \quad$ cyclooctatetraene
CNCMe3 tert-butylisocyanide
cp cyclopentadienyl
diars ortho-phenylenebis(dimethylarsine)
dmpe 1,2 bis(dimethylphosphino)ethane
dppe 1,2-bis(diphenylphosphino)ethane
Et ethyl
$\mathrm{H}_{2} \mathrm{CPh}$ benzyl

0022-328X/86/\$13.30 © 1986 Elsevier Sequoia S.A.
hx m

Me
$\mathrm{Me}_{6} \mathrm{C}_{6}$
or
Ph
$\mathrm{Ph}_{2} \mathrm{C}_{2}$
$\pi-\mathrm{Ph}_{4} \mathrm{C}_{4}$
rh
tg
thf
tol
tph
tr
trg
hexagonal
monoclinic
methyl
hexamethylbenzene
orthorhombic
Phenyl
diphenylacetylene
π-tetraphenylcyclobutadiene
rhombic
terragonal
tetrahydrofuran
toluene
$\pi-N, 2,3-n^{2}-\pi-4,5,6-\eta^{2}-3,4,5,6-t e t$ rapheny1-
-3,5-hexadiene-2-oneimine
triclinic
trigonal

1. INTRODUCTION

The cyclopentadienyl radical is one of the most widely found π-electron donors, and the vast majority of niobium organometallic derivatives have at least one of these ligands. Since the halo-monocyclopentadienyl compounds of niobium can be precursors of a wide range of new derivatives, considerable attention has been paid to this area. Preparative and structural studies have been aimed at investigating the bonding modes of cyclopentadiene, and to determine the relationship between the bonding and reactivity towards unidentate ligands. Such systems provide useful models for more general reactions at the metal centre. In many of these derivatives metal-metal bonding can occur, which is also of considerable theoretical and practical interest.

Organometallic intramolecular coordination compounds containing π - and σ-bonded olefins, dienes and cyclopentadiene have been the subject of reviews by Omae (ref.l). Interactions of organometalle moleties with carbanions and other electron rich centres have been reviewed by Kerber (ref.2).

This review represents the first overview of organometallic compounds for niobium for which structures have been determined by x-ray crystallography. A brief survey of the structural data is given, and the factors governing the stereochemical interactions in the coordination sphere of niobium are discussed. The material included has been obtained
from reports published in primary journals up to the end of 1984 , or to volume 101 of chemical abstracts. A general review of the structural data for niobium coordination compounds has been completed (ref.3), and this review serves to classify the organometallic structures and make comparisons between the organometallic and other complexes of niobium. The systems discussed are divided into mononuclear, hetero-binuclear, and homo-oligonuclear derivatives.

2. MONONUCLEAR COMPOUNDS

A. Monocyclopentadienyl Compounds

Structural data for monocyclopentadienyl niobium compounds are listed in Table 1. The crystal structure of $\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})_{4}$ is shown in Figure 1. The stereochemistry about the niobium is that of a regular square pyramid with the cyclopentadienyl ligand at the apex. There are two types of $\mathrm{Nb}-\mathrm{CO}$ bonds, one with a metal-carbon bond length of $207.7(7) \mathrm{pm}$, and the other with a bond length 3.8 pm longer at $211.5(8) \mathrm{pm}$. By contrast, the carbon-oxygen bond lengths are the reverse order at 114.5(9)pmand 111.2(10)pm respectively, such that the overall distance between the niobium atom and the oxygen atom are equal in both types. The niobium to cyclopentadiene distances (Table 1) are comparable to those found in other

Figure 1. A schematic view of the crystal structure of ($\left.n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})_{4}$. Reproduced with permission from Chem. Ber. (ref.4).

TAIES 1. (Continued - 2)

coppowns	$\begin{aligned} & \text { CRSSTAL } \\ & \text { CIASS } \end{aligned}$	$\begin{aligned} & \text { SPACE } \\ & \text { GROUP } \end{aligned}$	z	$\begin{aligned} & \begin{array}{l} g(p m) \\ b(p m) \\ \alpha(p m) \end{array} \end{aligned}$	$\begin{aligned} & a\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \mathrm{M}-\mathrm{Lm} \end{gathered}$	$\begin{aligned} & \mathrm{L} \mathrm{IML} \\ & \mathrm{~L}^{\prime}+\mathrm{M}-\mathrm{L} \\ & \left.{ }^{\circ}{ }^{\circ}\right) \end{aligned}$	REF.
$\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PH}_{2} \mathrm{C}_{2}\right)$.	m	$\mathrm{PL}_{1} / \mathrm{c}$	4	11523)		OC 211 (3)	c	11,12
. $\left(\mathrm{r}-\mathrm{H}_{4} \mathrm{C}_{4}\right)$				1398(2)	115.5(5)	cp 244(3,1)		
				2479(4)		PbC 225 3,4)		
						π-P4C 238(3,2)		
	m	Pī	2	2426.2(5)	96.4(2)	OC 204(2)	106(0,1)	13
				896.5(5)	85.1(2)	C 218(2,3)		
				1110.6(5)	95.9(2)	cp 244(2,3)		
$\left(n^{5}-\mathrm{cp}\right) \mathrm{Wb}\left(\mathrm{PH}_{3}\right)(\mathrm{tph})$	m	$\mathrm{P}_{1} / \mathrm{m}$	4	1107.077)		($\mathrm{H}_{3} \mathrm{P}$) 244.5 (5)	c	14
				2385.5(8)		(tph) $\mathrm{N} 238(2)$		
				1111.2(7)	102.50(2)	(tph) C $236(2,35$)		
						cp 244(2,4)		

[^0]related niobium compounds. Inspection of the data in Table 1 reveals a more general relationship between the $\mathrm{Nb}-\mathrm{CO}$ bond lengths and the $\mathrm{C}-\mathrm{O}$ bond lengths, the former elongating as the latter shortens. Other examples are: $\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})\left(\pi-\mathrm{Ph}_{3} \mathrm{GeC} \equiv \mathrm{CPh}\right)_{2} \quad($ ref.13) $\mathrm{Nb}-\mathrm{C}=204 \mathrm{pm}, \mathrm{C}-0=117 \mathrm{pm}$; $\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)_{2}$ (ref.10) $\mathrm{Nb}-\mathrm{C}=200 \mathrm{pm}, \mathrm{C}-0=120 \mathrm{pm}$. Thus the distance between the niobium and the oxygen atoms stays almost invariant at about 320 pm .
Aspinall and co-workers (ref.5) have prepared, and studied by x-ray crystallography, the molecule $\left[\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}^{\mathrm{III}}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{Cl}\right]^{+}\left[\mathrm{Nb}^{\mathrm{v}} \mathrm{OC}_{4}\right.$ (thf) $]^{-}$.thf. This compound is the only example (Table i) in which both an organometallic and a coordination species of niobium coexist in one crystal. The structure consists of discrete organometallic cations with niobium in an oxidation state of three and a formal coordination number eight, together with the inorganic anions with niobium in an oxidation state of five and a distorted octahedral environment, plus an uncoordinated molecule of tetrahydrofuran. The $\mathrm{Nb}^{\mathrm{v}}-\mathrm{C}_{\ell}$ bond length of $238.0(4,7) \mathrm{pm}$ is shorter by about 12.5 pm than that of the $\mathrm{Nb}^{\text {III }} \mathrm{C}_{\ell}$ bond length. This is In agreement whth the expectation that metal-1igand bond lengths should be directly proportional to the coordination state, and inversely proportional to the oxidation state of the metal. In ($n^{5}-c p$) $\mathrm{Nb}^{i v} \mathrm{C}_{\mathrm{l}_{3}}$ (dppe) (ref.8), the $\mathrm{Nb}^{1 v}-\mathrm{Cl}$ bond distance of $247.0(1) \mathrm{pm}$ (mean value) follows the same trend, its value lying between that of the corresponding $\mathrm{Nb}^{\mathrm{V}}-\mathrm{Cl}$ and $\mathrm{Nb}^{\mathrm{III}}-\mathrm{Cl}$ bond lengths (ref.5).

The crystal and molecular structure of ($n^{5}-c p$) NbCl_{2} (dmpe) is shown in Figure 2 where it can be seen that the 16 -electron compound has the Nb atom located between two "non-equivalent" half sandwiches. In addition there are two chlorides which are bonded to the Nb atom with a $\mathrm{C}_{\ell}-\mathrm{Nb}-\mathrm{C}_{\ell}$ angle of 91.46(6) ${ }^{\circ}$. This is significantly less than the $\mathrm{C}_{\ell}-\mathrm{M}-\mathrm{C}_{2}$ angle in other 16-electron analogous metallocenes. The mean value of the $\mathrm{Nb}-\mathrm{Cl}$ bond length in monocyclopentadienyl compounds (Table 1, 248pm) is quite comparable to that found in eight coordinated niobium coordination compounds (249 pm) (ref.3). The same formal coordination number can be proposed for the organometallic derivatives $\left.\left[\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}^{(C N H e}\right)_{4} \mathrm{C} \ell\right]^{+}$(ref.5) and ($\eta^{5}-c p$) NbCl_{3} (dppe) (ref.8), where chlorides are found as 1igands.

The $\mathrm{Nb}-\mathrm{P}$ bond distance is observed to decrease from 273.4(1,55) pmin ($\eta^{5}-\mathrm{cp}$) NbCl_{3} (dppe) (ref.8) , through $256.5(15,18) \mathrm{pm}$ in ($\left.\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}\left(\mathrm{PPh}_{3}\right)_{2}$. $(\mathrm{CO})(\mathrm{H})_{2}$ (ref.6), to $244.5(5) \mathrm{pm}$ in $\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}\left(\mathrm{PH}_{3}\right)(\mathrm{tph})$ (ref.14) which is the order of decreasing steric demand of the phosphine ligand itself, dppe $>\mathrm{PPh}_{3}>\mathrm{PH}_{3}$.

Figure 2. The molecular structure of ($n^{5}-\mathrm{cp}$) NbCl_{2} (dmpe). Reproduced with permission from J. Organomet. Chem. (ref.9).

The $\mathrm{Nb}-\mathrm{C}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)$ distance 220.6 pm (mean value) is 17.4 pm shorter than that of $\mathrm{Nb}-\mathrm{C}\left(\mathrm{C}_{4} \mathrm{Ph}_{4}\right)$, and even shorter than that of $\mathrm{Nb}-\mathrm{C}$ (cp) at 242.5 pm (Table 1). These differences are probably due to different π-acceptor abilities of the coordinated ligands (ref.10). The π-acceptor ability of the ligand will contribute to the $\mathrm{Nb}-\mathrm{L}$ bond order in the sequence $\mathrm{C}_{2} \mathrm{Ph}_{2}$ > $\mathrm{C}_{4} \mathrm{Ph}_{4}>\mathrm{cp}$, the latter thus having the largest $\mathrm{Nb}-\mathrm{C}$ bond length.

B. Bis(cyclopentadienyl) Compounds

From a structural point of view, niobium bis(cyclopentadienyl) compounds, summarized in Table 2, can be divided into four groups. In ($\left.n^{5}-c p\right)_{2} N b\left(\mathrm{BH}_{4}\right)$ (Ref.15) the niobium atom is n^{5} bonded to two cp ligands, and the $\mathrm{BH}_{4}{ }^{-}$ anion via two bridging hydrogen atoms. An x-ray investigation of the
compounds shows that the orthorhombic crystals are of the V-shaped sandwich type (Figure 3). The niobium atom has a distorted tetrahedral environment and a 16-electron valence shell. Usually, the geometry of the V-shaped, or clino-, sandwich is similar to that found in the other analogous niobium compounds listed in Table 2. It is interesting to note that while the cp (centroid) $-\mathrm{Nb}-\mathrm{cp}$ (centroid) angle of 130° lies within the $128-143^{\circ}$ range of the other analogues, the $\mathrm{Nb}-\mathrm{C}$ (cp) distance of $234(6)$ is one of the shortest reported. We have no explanation for this, however, as was mentioned in the original report (ref.15), the crystals are very unstable and the accuracy of the results is not high with a final value of $R=$ 12.8\%.

The second group consists of $\left(\eta^{5}-c p\right)_{2} \mathrm{Nb}\left(\mathrm{S}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{PS}_{2}\right)$ (ref.21), $\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}\left(\mathrm{S}_{2}\right)\left(\mathrm{CH}_{3}\right)$ and $\quad\left(n^{5}-c p\right)_{2} \mathrm{Nb}\left(\mathrm{CS}_{2}\right)\left(\mathrm{CH}_{3}\right) \quad(r e f .22), \quad\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}\left(\mathrm{CS}_{2}\right)$

Figure 3. A view of the crystal structure of $\left.\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}^{\mathrm{BH}} \mathrm{BH}_{4}\right)$. Reproduced with permission from Zh. Strukt. Khim. (ref,15).
(ally1) (ref.23), and ($\left.n^{5}-c p\right)_{2} \mathrm{Nb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (ref.24), where in addition to the cp ligands, there is a bidentate and a unidentate ligand bonded to the niobium atom. In the first two examples the bidentate ligand $1 s \mathrm{~S}_{2}$, while in the next two examples it is CS_{2} bonded via the carbon and one sulphur atom, and in the last example it is $\mathrm{C}_{2} \mathrm{H}_{4}$. The structure of the latter is shown in Figure 4 as a representative example of the group. The niobium is n^{5} bonded to two cp rings, which are planar with 47.6° dihedral angle between them, making room in the horizontal mirror piane for a σ-bonded ethyl (C(13)) and a $\sigma-\pi$-bonded ethylene ligand ($C(1)$ and $C(2)$), Figure 4. The mean $\mathrm{Nb}-\mathrm{C}$ distance increases in the order 229.9(9)pm ($\mathrm{C}_{2} \mathrm{H}_{4}$) < 231.6(8) pm $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)<240.2(5) \mathrm{pm}(\mathrm{cp})$ for both electronic and steric reasons. For a detailed discussion of the effects the reader is referred to the original work (ref.24).

Figure 4. The molecular structure of $\left(n^{5}-\mathrm{Cp}\right)_{2} \mathrm{Nb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. Reproduced with permission from J. Am. Chem. Soc. (ref.24).

The third group consists of $\left(n^{5}-c p\right)_{2} \mathrm{NbH}_{3}$ (ref.18) and ($\left.n^{5}-\mathrm{cp}\right)_{2} \quad \mathrm{NbO}_{2} \mathrm{Cl}$ (ref.20) where in addition to the two cp rings there are three unidentate ligands in the coordination sphere of the metal atom.

The remaining bis(cyclopentadieny1) niobium compounds in Table 2 have the two cp rings together with two unidentate ligands.

Inspection of the data reveals three different types of ligands (atoms) bonded in the clino-sandwich molecules. Examples have been reported with the undentate ligands: $H, C O, C R, O, C \ell, S H$, and $S R$; and with the bidentate ligands: $\mathrm{BH}_{4}{ }^{-}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{~S}_{2}$, and CS_{2}. In general, the mean value of the $\mathrm{Nb}-\mathrm{L}$ bond distance increases with the van der Waals radius of the ligating atom. There is a variety of ligands which are bonded to niobium through C or S donor atoms, and the bond distances show systematic variations. The mean $\mathrm{Nb}-\mathrm{C}$ distances decrease in the order: cp (240.3 pm) $>\mathrm{CH}_{3}$ (233.6pm) $>\mathrm{C}_{2} \mathrm{H}_{5}$ (231.6pm) $>\mathrm{ally1}(230.9 \mathrm{pm})>\mathrm{C}_{2} \mathrm{H}_{4}$ (229.8pm) $>\mathrm{CH}_{2} \mathrm{Ph}$ (229.3pm) $>\mathrm{CS}_{2}$ (222.4pm). The mean $\mathrm{Nb}-\mathrm{S}$ distances decrease in the order SR (260.2 pm) $>\mathrm{SH}(253.9 \mathrm{pm})>\mathrm{S}_{2} \mathrm{C}(251.1 \mathrm{pm})>\mathrm{S}_{2}$ (248.3pm). The nature of these differences indicates that there is a dependence on the electronic properties of the ligand and the steric interactions between ligands around the coordination sphere of the metal atom.

There is a relationship between the $\mathrm{Nb}-\mathrm{cp}$ (centroid) bond length and the cp (centroid)-Nb-cp(centroid) angle such that as the bond lengthens the angle closes. For example, the distance and angle for ($\left.\eta^{5}-c p\right)_{2} \mathrm{Nb}(\mathrm{CO})_{4} \mathrm{H}$ are 204 pm and $143(3)^{\circ}$ respectively. The same parameters for $\left(n^{5}-\mathrm{cp}_{2} \mathrm{NbO}_{2} \mathrm{Cl}\right.$ are 213 pm and $128(4)^{\circ}$ respectively. These two sets of values represent the limiting cases in Table 2. The variation can be explained in terms of steric hindrance within the coordination sphere, as the rings move further away with the same dihedral angle between them the "bite" angle at the metal atom closes up. There is a noticeable (2.2 pm) difference between the mean $\mathrm{Nb}-\mathrm{C}$ (cp) bond distance in Table 2 (240.3pm) and Table 1 (242.5pm), the monocyclopentadienyl $\mathrm{Nb}-\mathrm{cp}$ bond distances being slightly longer.

C. Cyclooctatetraene Compounds

Two niobium compounds have been investigated where a cyclooctatetraene ligand is coordinated to the niobium acom. The relevant structural details are given at the end of Table 2. The structure of $\left[\eta^{5}-\mathrm{cp}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)\right] \mathrm{Nb}\left(\eta^{4}-\mathrm{C}_{8} \mathrm{H}_{8}\right)$ (diars) (ref.28) is illustrated in Figure 5. The cyclopentadienyl ring is exo to the niobium, and the phenyl substituent is endo, and this is the first instance where the geometry of this bicyclic ligand has been established.

The η^{5}-bicyclic ligand bonds to Nb through $\mathrm{C}(21)-\mathrm{C}(25),($ Figure 5$)$ and the mean $\mathrm{Nb}-\mathrm{C}$ distance, $233(3) \mathrm{pm}$ is shorter than those found between $\mathrm{Nb}-\mathrm{cp}$

Figure 5. Molecular structure of $\left[n^{5}-\mathrm{cp}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)\right] \mathrm{Nb}\left(n^{4}-\mathrm{C}_{8} \mathrm{H}_{8}\right)$ (diars). Reproduced with permission from J. Am. Chem. Soc. (ref.28).
or $\mathrm{Nb}-(\mathrm{cp})_{2}$ (242.5 and 240.3 pm respectively). On the other hand, the mean $\mathrm{Nb}-\mathrm{C}\left(\mathrm{n}^{4}-\mathrm{C}_{8} \mathrm{H}_{8}\right)$ distance at $248(4) \mathrm{pm}$ is longer than those mentioned previously.

The structure of the tricyclooctatetraene nioblum anion (ref.29) is shown in Figure 6. There are two types of cyclooctatetraene ligand. One has been described as n^{4}-bonded, and the mean $\mathrm{Nb}-\mathrm{C}$ distance of 243.8 (15) pm is longer by about 7 pm than that of the two n^{3}-bonded cyclooctatetraene ligands (Table 2). These observations indicate that the variation of bond distance is not a simple function of steric crowding in the polyhedra. The significance, if any, of this observation cannot be definitely evaluated on the basis of the existing data. It does, however, suggest directions for further experimental work.
TAIE 2. SIMUCIURAL DATA FOR MOHONCIEAR BIS(CYCLOFENTADIENLL) NICBIM ORCANCMETALITC OCMPOUNDf

capouns	CKXSTAL CIASS	$\begin{aligned} & \text { SRACB } \\ & \text { CROUP } \end{aligned}$	z	$\begin{aligned} & \mathrm{a}(\mathrm{pm}) \\ & \mathrm{b}(\mathrm{pm}) \\ & \mathrm{c}(\mathrm{pal}) \end{aligned}$	$\begin{aligned} & \alpha\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	$\underset{(\mathrm{pm})}{\mathrm{M}-\mathrm{L}}$	$\begin{aligned} & \text { Mcp } \\ & \text { (centroid) } \\ & \text { (pm) } \end{aligned}$	$\begin{aligned} & \mathrm{L}+\mathrm{H}, \\ & \text { cp } 7 \mathrm{cp} \mathrm{cp} \\ & \left({ }^{\circ}\right) \end{aligned}$	REF.
$\left(n^{5}-\mathrm{P}\right)_{2} \mathrm{NO}^{\text {IIIL }}$ (8, $\left.\mathrm{H}_{4}\right)$	or	Pmm2	4	1356.2(6)		$c p^{\text {b }} 234$ (6)		$56^{\text {c }}$	15
				932.7(5)		H 200(10)		130	
				792.3(5)		B 226(6)			
$\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}^{\mathrm{III}}(00) \mathrm{H}$	tr	Pī(P1)	2	1163(2)	112.0(5)	OC 2044 4	204	$104(3,3)^{\text {e }}$	16
				791(2)	98.7(5)	cp 236 $(4,2)$		143(3)	
		(P1)		5942)	92.0(5)	H 150		$37^{\text {d }}$	
	rh	$\mathrm{P}_{1}{ }_{1}{ }_{1}{ }^{1} 1$	4	654.4(5)		OC 202(1)	205	92.3 (5) ${ }^{\text {f }}$	17
				1281.5(5)		cp 230 2,10)		not given	
				1253.1(5)		S $253.9(4)$		$45^{\text {d }}$	
$\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{NBH}_{3}$		$\mathrm{P}_{4} \mathrm{I}_{1}{ }^{2}$	8	1101.2(5)		H 168(6,8)	205.9	63(3,2);126(3)8	18
				-		cp 237.5(4,18)		141.6	
				1496.0(5)					
$\left(n^{5}-\mathrm{CP}\right)_{2} \mathrm{Sb}^{\mathrm{IV}} \mathrm{C} l_{2}$	m	$\mathrm{P}_{2} / \mathrm{b}$	8	1374(2)		ce 247.0(4,6)	209	$85.6(2,1)^{\text {h }}$	19
				1221(2)		cp 239(3,6)		$130.3(0,6)$	
				1316(2)	107.7(1)				
	m	$\mathrm{P}_{1} / \mathrm{c}$	8	1781(1)		Ce 248.3(2)	213(1)	43.6(3) ${ }^{1}$	20
				634.3(5)	138.28(5)	- 199(1,2)		128.4(4,3)	
				2615.6(6)		cp 244(2,3)			

TARE 2. (Continued - 2)

appouns	$\begin{aligned} & \text { cxYSTAL } \\ & \text { caASS } \end{aligned}$	$\begin{aligned} & \text { SPACE } \\ & \text { GROUP } \end{aligned}$	z	$\begin{aligned} & a(p m) \\ & b(p m) \\ & \alpha(p m) \end{aligned}$	$\begin{aligned} & \alpha\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	$\underset{(\mathrm{pm})}{\mathrm{M}-\mathrm{L}}$	$\begin{aligned} & \text { Mcp } \\ & \text { (centroid) } \\ & \text { (pm) } \end{aligned}$	$\begin{aligned} & \text { LHL } \\ & \text { cp }{ }^{\circ} \text { (}{ }^{(1)} \end{aligned}$	REF.
$\left.\left(n^{5}-p\right)\right)^{\mathrm{Nb}}\left(\mathrm{S}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{PS}_{2}\right)$	m	$\mathrm{Pr}_{1} / \mathrm{c}$	4	1456.4(3)		$\left(S_{2}\right)$ S $249.3(4,36)$	211(1,1)	47.9(2);69.7(2) ${ }^{\text {j }}$	21
				1740.9(6)	103.622)	S $260.2(4)$		128.4(2)	
				750.6(2)		cp 243(2,3)		$52.5{ }^{\text {d }}$	
$\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{NH}\left(\mathrm{S}_{2}\right)\left(\mathrm{CH}_{3}\right)$	m	$\mathrm{P}_{1} / \mathrm{n}$	4	1152.1(2)		$\left(S_{2}\right)$ S $247.4(3,42)$	211.00,2)	47.9(2); $75(2)^{\mathrm{k}}$	22
				1326.4(5)	90.90(2)	$\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C} 232.7(11)$		130.1	
				748.9(1)		cp 241.8(9,26)		$51.1{ }^{\text {d }}$	
$\left(n^{5}-\mathrm{cp}_{2}{ }^{\mathrm{NB}}\left(\mathrm{CS}_{2}\right)\left(\mathrm{CH}_{3}\right)\right.$	m	$\mathrm{P}_{1} / \mathrm{n}$	4	1281.7(3)		$\left(\mathrm{S}_{2} \mathrm{C}\right) \mathrm{C} 220.6(8)$	210.1(0,8)	ℓ	22
				1216.1(8)	90.95(2)	(CS_{2}) $\mathrm{S} 250.3(8)$		131.9(5)	
				748.2(3)		($\left.\mathrm{H}_{5} \mathrm{C}\right) \mathrm{C} 234.688$)		$49.1{ }^{\text {d }}$	
						cp 239.8(8,28)			
$\left(n^{5}-\mathrm{cp}\right)_{2}{ }^{\mathrm{Nr}}\left(\mathrm{CS}_{2}\right)(\mathrm{allyl})^{\mathrm{m}}$	or	$\mathrm{P}_{1}{ }_{1} \mathbf{1}^{1}{ }_{1}$	8	759(1)		$\left(\mathrm{S}_{2} \mathrm{C}\right) \mathrm{C} 224.1(21)$		m	23
				1360(1)		(C_{2}) $\mathrm{S} 251.8(9)$		133.0	
				2647(2)		(a1lyl)C $230.9(31)$			
						c¢ $242.7(25,59)$			
						($\left.\mathrm{S}_{2} \mathrm{C}\right) \mathrm{C} 224.1$ (21)		m	
						(S_{2})S $251.4(9)$		133.3	
						(allyl) $230.9(31)$			
						cp 243.1(21,59)			
$\left(n^{5}-\mathrm{Cp}\right)_{2} \mathrm{NH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	tg	I41/a	16	1648.1(2)		($H_{4} \mathrm{C}_{2}$) $\mathrm{C} 229.9(9,22)$	209.6	35.6(3);74.8(3) ${ }^{\mathbf{n}}$	24
				-		($\mathrm{H}^{5} \mathrm{C}^{2}$) $\mathrm{C} 231.6(8)$		not given	
				1818.6(2)		cp 240.2(5,28)		47.6d	

TARE 2. (Contimued - 3)

capounds	${ }_{\text {cIASSAL }}^{\text {cIAS }}$	$\begin{aligned} & \text { SPACE } \\ & \text { GROUP } \end{aligned}$	z	$\begin{aligned} & a(p m) \\ & b(p m) \\ & \alpha(p) \end{aligned}$	$\begin{aligned} & \alpha\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	$\underset{(\mathrm{pri})}{\mathrm{M-L}}$	$\begin{aligned} & \text { M-cp } \\ & \text { (centroid) } \\ & \text { (pu) } \end{aligned}$	$\begin{aligned} & \mathrm{L}-\mathrm{H}-\mathrm{L} \\ & c^{-1+c p} \\ & \left(^{\circ}\right) \end{aligned}$	REF.
	or	$\mathrm{P}_{1} \mathrm{I}_{1} \mathrm{~L}_{1} 8$		884.4(1)		c 230.6(7,1)		79.3(2) ${ }^{0}$	25
				2153.2(2)		cP $240.8(9,46)$		133.1	
				1933.1(2)					
						C $230.1(8,2)$		78.6(3) ${ }^{\circ}$	
						cP 241.2(10,48)		133.2	
$\left(n^{5}-\mathrm{P}\right)_{2} \mathrm{Nb}(0)\left\{\mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{Cr}_{3}\right)_{2}\right\}$	m	$\mathrm{P}_{1} / \mathrm{n}$	4	798.3(2)		0 163(3)		$99(5)^{\text {p }}$	26
				2760.0(7)	113.22(2)	C 227(4)		53(1)	
				868.9(2)		cp 246(5,11)			
$\left(n^{5}-\mathrm{CP}_{2} \mathrm{~N}^{\text {Sb }}\right.$ IV $\left(0-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}$	or	Pan2	8	3198.5(9)		($\left.\mathrm{H}_{2} \mathrm{C}\right) \mathrm{C} 229.7$	210		27
				1087.5(3)		cp 241(0,4)		135.3	
				1052.7(3)					
$\begin{aligned} & {\left[\left(\mathrm{n}^{5}-\mathrm{CP}\right)_{2} \mathrm{Nb}^{\mathrm{V}}\left(\sigma-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right] \cdot} \\ & \cdot\left(\mathrm{BR}_{4}\right) \end{aligned}$	m	$\mathrm{P2}_{1} / \mathrm{n}$	4	1360.2(6)		($\left.\mathrm{H}_{2} \mathrm{C}\right) \mathrm{C} 225.0(4,1)$	210	$106.3(1)^{8}$	27
				1293.4(5)	110.26(3)	cp 241.8(4,24)		131.0	
				1262.3(5)					
$\begin{gathered} {\left[\left(n^{5}-\mathrm{Tp}\right)_{2} \mathrm{Nb}^{\mathrm{III}}\left(\mathrm{O}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right] .} \\ \therefore\left[\mathrm{Na}(18-\mathrm{cromn}-6)(\mathrm{thf})_{2}\right] \end{gathered}$	tr	P1	2	1677(8)	66.2(2)	$\left(\mathrm{H}_{2} \mathrm{C}\right) \mathrm{C} 232(3,3)$	208(0,2)	$80(1)^{g}$	27
				1468(3)	85.4(3)	cp 230 6,12)		136.0	
				1253(2)	66.2(3)				

TAHE 2. (Continued - 4)

componins	$\begin{aligned} & \text { CRYSTAL } \\ & \text { CIASS } \end{aligned}$	$\begin{aligned} & \text { SPACE } \\ & \text { GROUP } \end{aligned}$	Z	$\begin{aligned} & a(\mathrm{pm}) \\ & b(\mathrm{pm}) \\ & \mathrm{c}(\mathrm{pm}) \end{aligned}$	$\begin{aligned} & \alpha\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \text { M-L } \\ & \text { (pm) } \end{aligned}$	$\begin{aligned} & \text { M-cp } \\ & \text { (centroid) } \\ & \text { (pn) } \end{aligned}$	L-ITL cp- $\mathrm{M}-\mathrm{cp}$ $\left({ }^{\circ}\right)$	REF.
$\begin{aligned} & \left.\left\{n^{5}-\text { Lp }^{(} \mathrm{C}_{8} \mathrm{H}_{8}\right)\right\} \times\left[\left(n^{4}-\mathrm{C}_{8} \mathrm{H}_{8}\right) .\right. \\ & \cdot(\text { diars })\} \end{aligned}$	m	$\mathrm{P}_{2} / \mathrm{c}$	4	$898.1(16)$ $3193.0(26)$	106.97(8)	$\left(n^{4}\right)(248(4,24)$ $\left(n^{5}\right)(233(3,5)$		$\begin{array}{r} 75.1^{\mathrm{r}} \\ 131.1^{\mathrm{s}} \end{array}$	28
				1217.7(7)		As $268.3(2,14)$			
$\begin{aligned} & {\left[\left(n^{4}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{sb}^{-1}\left(n^{3}-\mathrm{C}_{8} \mathrm{H}_{6}\right)_{2}\right] .} \\ & \cdot\left(\mathrm{AFFH}_{4}\right) \end{aligned}$	m	$\mathrm{P}_{1} / \mathrm{c}$	4	1299.6(16)		$\left(n^{3}\right) \mathrm{C} 237.5(13,142)$			29
				2237.7(26)	115.51(11)	$\left(n^{3}\right) \mathrm{c} 236.0(13,133)$			
				1437.1(23)		$\left(n^{4}\right)(243.8(15,245)$			

[^1]

Figure 6. The crystal structure of $\left[\left(n^{4}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Nb}\left(n^{3}-\mathrm{C}_{8} \mathrm{H}_{8}\right)_{2}\right]^{-}$. Reproduced with permission from J. Am. Chem. Soc. (ref.29).

3. HETEROBINUCLEAR COMPOUNDS

Structural data for heterobinuclear compounds are summarised in Table 3. There are several types of bridged systems in this group. The crystal structure of the $\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{3}\right]^{-}$anion (ref.30) is the only example with one cp ligand. The $\left[\mathrm{Nb}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{3}\right]$ moiety in the anion has tetrahedral geometry, with the niobium at the top of the pyramid and at 119.3pm from the centre of the almost perfect plane described by the three CO 11gands and the Sn atom. The mean $\mathrm{Nb}-\mathrm{C}$ (CO) of distance of 208.6(15) pm is about 2.5 pm longer than that found in the monocyclopentadienyl compounds listed in Table 1. On the other hand, the value 241.9 pm for $\mathrm{Nb}-\mathrm{C}$ (cp) distance is very near to the 242.5 pm (mean value) found in the monocyclopentadienyl compounds in Table 1.

The molecule of $\left[\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}\left\{\mathrm{HgS}_{2} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right\}\right.$] (ref.31) consists of a rhomboidal metal cluster, NbHg_{3}, which is nearly planar with the angle between the two NbHg_{2} triangles of only 5°, as shown in Figure 7. The $\mathrm{Nb}-\mathrm{Hg}$ bond lengths are compatible with a single bond (Table 3).

The niobium(III) atom in $\left(n^{5}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Nb}(\mathrm{CO}) \mathrm{SnCl}_{3}$ (ref.32) and ($\left.n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO}) \mathrm{SnPh}_{3}$ (refs.32, 33) is n^{5}-bonded to two cp rings, (with a 42.2° and 38.9° dihedral angle between the rings. The Sn atom is bound to the Nb (III) atom to form a wedge in the open side of the clino-sandwich. It is interesting to note that as the $\mathrm{Sn}-\mathrm{Nb}$ bond length increases by 6.1 pm from $276.4(1) \mathrm{pan}$ in the former, the $\mathrm{Nb}-\mathrm{C}$ (cp) bond length decreases by 6.0 pm from 240 pm in the former.

An x-ray investigation of ($\left.n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mu-\mathrm{CO})_{2} \mathrm{Mo}(\mathrm{CO}) \mathrm{cp}$ (ref.34) shows an unusual coordination of the carbonyl groups. The dihedral angle between the two cp rings coordinated to niobium is 49°, giving enough room for the molybdenum atom to bond to the niobium with a bond length of $307.3(1) \mathrm{pm}$, plus two carbonyl groups to bridge asymmetrically between the two metal atoms. One of the carbonyls is bonded through the carbon atom only ($\mathrm{Nb}-\mathrm{C}=$ 253 pm , and $\mathrm{Mo}-\mathrm{C}=202 \mathrm{pm}$), and the other is σ-bonded to the molybdenum (Mo-C $=194.4 \mathrm{pm}$) and π-bonded to the niobium ($\mathrm{Nb}-\mathrm{C}=222 \mathrm{pm}, \mathrm{Nb}-\mathrm{O}=226 \mathrm{pm}$). The remaining ligands are bonded in the normal manner.

Figure 7. The Crystal Structure of $\left[\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}\left\{\mathrm{HgS}_{2} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right\}_{3}\right]$. Reproduced with permission from J. Chem. Soc. Dalton Trans. (Ref.31).

One of the most common structures for the heterobinuclear niobium compounds is one in which a triangular $\mathrm{Nb}-\mathrm{H}-\mathrm{M}$ group is found, for example $\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H}) \mathrm{Na}(\mathrm{CO})_{3}$ (ref.35); $\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H}) \mathrm{Zn}^{\left(\mathrm{BH}_{4}\right)} \mathbf{2}_{2}$ (ref.36); $\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})_{2}(\mu-\mathrm{H}) \mathrm{Fe}(\mathrm{CO})_{4} \quad($ ref. 37$) ; \quad\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H})\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Mn}(\mathrm{CO})_{2}$ (ref.38); and $\left(\eta^{5}-c p\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-H)\left(\eta^{5}-\mathrm{cp}\right) V(\mathrm{CO})_{3}$ (ref.39). Another common type has a semi-bridged carbonyl group between the niobium atom and the other metal atom, for example: $\left(n^{5}-c p\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{CO}) \mathrm{Mn}(\mathrm{CO})_{4}$ (ref.35); and $\left(\eta^{5}-c p\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{CO}) \mathrm{Co}(\mathrm{CO})_{3} \quad(r e f .40)$. The crystal structure of the niobium-nickel hydrogen bridged derivative (ref.35) is shown in Figure 8 as a representative example. The compound contains a clino-sandwich biscyclopentadienyl niobium carbonyl, hydride bridged to the nickel carbonyl moiety ($\mathrm{Nb}-\mathrm{H}=183 \mathrm{pm}$ and $\mathrm{Ni}-\mathrm{H}=168 \mathrm{pm}$). Interestingly, the $\mathrm{Nb}-\mathrm{C}$ (cp) distances in this series of compounds is almost constant at mean value of 238.2 pm while the other distances vary over a range (Table 3).

Figure. 8. Molecular structure of $\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H}) \mathrm{N}(\mathrm{CO})_{3}$. Reproduced with permission from J. Organomet. Chem. (ref.35).
TARE 3. STRUCTURAL DATA FOR heTEROBINULIEAR NTOBTIM ORCANOMETALLIC COMPOUND ${ }^{\circ}$

COMPOUNS	$\begin{aligned} & \text { CRYSTAI } \\ & \text { CIASS } \end{aligned}$	$\begin{aligned} & \text { SRACE } \\ & \text { GROUP } \end{aligned}$	z	$\begin{aligned} & \mathrm{a}(\mathrm{pm}) \\ & \mathrm{b}(\mathrm{pm}) \\ & \mathrm{c}(\mathrm{pm}) \end{aligned}$	$\begin{aligned} & \alpha\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Nb-L} \\ & (\mathrm{pm}) \end{aligned}$	$\begin{aligned} & \mathrm{Nb}-\mathrm{M}) \\ & (\mathrm{pan}) \end{aligned}$	$\mathrm{Nb}-\mathrm{LM}\left({ }^{\circ}\right)$ $\mathrm{M} \mathrm{Nb}-\mathrm{L}\left({ }^{\circ}\right)$ Cp ring planes $\left({ }^{\circ}\right)$	REF.
$\begin{aligned} & {\left[\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}\left(\mathrm{SrPh}_{3}\right) .\right.} \\ & \left((\mathrm{OD})_{3}\right]\left(\mathrm{NRt}_{4}\right) \end{aligned}$	m	$\mathrm{P}_{2} / \mathrm{n}$	4	1383.8(9)	97.89(6)	0c $208.6(15,44)$	\$n ${ }^{\text {b }} 282.0(2)$	-	30
				1520.6(18)		cp 241.9		70.7(4,1.6)	
				1791.8(14)				-	
$\begin{aligned} & {\left[(\eta ^ { 5 } - \mathrm { qp } _ { 2 }) _ { 2 } \mathrm { N } \left(\mathrm{HgS}_{2} \mathrm{CN} .\right.\right.} \\ & \left.\left..\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{3}\right] \end{aligned}$	m	$\mathrm{P}_{1} / \mathrm{n}$	4	1230.2(10)		cp 241. $(3,6)$	Hg 279.0(3,18)	-	31
				1838.5(11)	108.18(5)			62.3(1,2);124.4(1) ${ }^{\text {d }}$	
				1607.7(5)				not given	
$\begin{aligned} & {\left[\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Ne}_{2} \mathrm{Nb}^{\mathrm{IIII}} .\right.\right.} \\ & \left..(0) \mathrm{SnCl}_{3} \mathrm{Cl}_{3}\right] \end{aligned}$	m	$\mathrm{P}_{1} / \mathrm{n}$	4	893.69(15)		OC 203.1(9)	Sh 276.4(1)	-	32
				1335.89(12)	99.490(14)	cp 240		88.8(2)	
				1392.92(20)				42.2	
$\begin{aligned} & {\left[\left(n^{5}-q\right)_{2} \mathrm{Nb}^{\mathrm{III}}(\infty) .\right.} \\ & \text {. } \left.\mathrm{SnFh}_{3}\right] \end{aligned}$	m	$\mathrm{P}_{1} / \mathrm{n}$	4	1010.21(21)		OC 205(2)	Sh 282.5(2)	-	32
				1746.3X32)	95.578(16)	cp 234, 5)		85.2(5)	33
				1424.73(29)				38.9	
$\begin{aligned} & {\left[\left(n^{5}-c\right)_{2} 1 \mathrm{lb}(\mu-C)_{2} .\right.} \\ & \cdot M \phi(C))(c p) \end{aligned}$	or	Pbca	8	1274.8(5)		(μ cos) 22661)	Mb 307.3(1)	not given	34
				1674.5(6)		OC 222 (1)		not given	
				1431.4(7)		OC 25 (1)		49	
						cp 237-248			
$\begin{gathered} \left(n^{5}-\mathrm{cp}\right)_{2^{\mathrm{Nb}}}{ }^{\mathrm{III}(\infty) .} . \\ (\mu-\infty) \mathrm{M}(\infty)_{4} \end{gathered}$	m	$\mathrm{P}_{2} / \mathrm{c}$	4	829.2(3)		OC 206.1(4)	Mn 317.6(1)	not given	35
				1623.2(5)	92.40(2)	$00_{\text {br }} 278.1$ (5)		35.1(1);81.2(1) ${ }^{\text {e }}$	
				1161.5(4)		cp 239.7(5,48)		44.2(5)	
$\begin{gathered} \left(n^{5}-\mathrm{cp}\right)_{2 \mathrm{Nb}} \mathrm{III}_{(\infty)} . \\ (\mu+\mathrm{H}) \mathrm{N}(\infty)_{3} \end{gathered}$	m	$\mathrm{P}_{2} / \mathrm{c}$	4	775.4(2)		$\mu-1183$	N1 321.8(1)	132.7	35
				1605.64)	99.24(2)	OC 206.1(8)		22.6(2); $74.6(2)^{\text {f }}$	
				1203.6(3)		Cp not given		37.8	

TABE 3. (Contimed - 2)

copouns	$\begin{aligned} & \text { crystai } \\ & \text { CAASS } \end{aligned}$	$\begin{aligned} & \text { SPACE } \\ & \text { GPOUP } \end{aligned}$	z	$\begin{aligned} & a(p m) \\ & b(p m) \\ & \alpha(p m) \end{aligned}$	$\begin{aligned} & \alpha\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	$\stackrel{\mathrm{NH}-\mathrm{L}}{(\mathrm{pm})}$	$\begin{aligned} & \mathrm{Nb-M} \\ & (\mathrm{pm}) \end{aligned}$		REF.
$\begin{aligned} & \left\{\left(n^{5}-\Phi\right)_{2^{N b}}{ }^{\mathrm{IIL}} \mathrm{H}_{\mathrm{H}}\right. \\ & \cdot(\infty)\}_{2^{16}}(\infty)_{4} \end{aligned}$	m	$\mathrm{Pr}_{1} / \mathrm{n}$	4	$1199.87(2)$$1494.8(4)$$1519.1(3)$	110.75(2)	${ }_{\sim}^{+1} 175.2$	M6 357.9	141;133	35
						$\mu-182.7$	M0 356.5	97.6;100.38	
						OC 206.2 (14)		41.4;43.0	
						OC 202.3(14)			
						cp 237(0,1)			
$\begin{aligned} & \left(\eta^{5}-q p\right)_{2} \mathrm{NB}(C 0)(\mu-1) . \\ & 2 n\left(\mathrm{H}_{4}\right)_{2} 0.5 C_{6} \mathrm{H}_{6} \end{aligned}$	tr	P1	2	810.5(2)	89.65(1)	oc 205.8(4)	2n 282.9(2)	107	36
				935.0(2)	95.49(1)	u+174.6		h	
				1125.2(2)	94.33(2)	cp 238		39.3	
$\begin{aligned} & \left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\infty)(\mu-\mathrm{H}) . \\ & \cdot \mathrm{Fe}(\infty)_{4} \end{aligned}$	m	$\mathrm{P}_{1} / \mathrm{c}$	4	783.5(3)		u+1 191(3)	Fe 332.4(1)	141.3(23)	37
				1350.8(2)	97.05(2)	OC 205.7(4)		17.6(11);82.4(1) ${ }^{1}$	
				1516.6(2)		cp 237.6(4,49)		43.7	
		P_{1} / n	4	908.8(2)		H + 198(8)	M 333.0 (2)	141(5)	38
				1423.9(4)	95.03(2)	OC 203.5(10)		100(3)	
				1280.1(3)		cp 238.3(10,59)			
$\begin{aligned} & \left(n^{5}-q p\right)_{2} \mathrm{ld}(\infty)(\mu-1) . \\ & \left.\cdot\left(n^{5}-\Phi\right) v(\infty)\right)_{3}^{k} \end{aligned}$		P1	4	1103.3(4)	68.90(3)	$\mu+\mathrm{H}$ 206(18)	V 372.5(4)	173(8)	39
				1320.6(5)	71.17(3)	OC 202.4(15)		70(5)	
				1476.3(5)	68.91(3)	cp 238.6(18,92)		41.8	
						$\mu+\mathrm{H} 187(15)$	v 370.1(3)	155(8)	
						OC 203.8(22)			
						cp 238.5(21.70)			

TARLE 3. (Continued - 3)

There is a relationship between the $\mathrm{Nb}-\mathrm{L}$ distances and the $\mathrm{Nb}-\mathrm{H}-\mathrm{M}$ bridge angle. As the angle opens, the $\mathrm{Nb}-\mathrm{C}$ (CO) distance decreases and both the $\mathrm{Nb}-\mathrm{H}$ and the $\mathrm{Nb}-\mathrm{M}$ distances increase. For example, the values for the $\mathrm{Nb}-\mathrm{C}$ (CO) , $\mathrm{Nb}-\mathrm{H}$, and $\mathrm{Nb}-\mathrm{M}$ distances, and the $\mathrm{Nb}-\mathrm{H}-\mathrm{M}$ angle in ($\left.\mathrm{n}^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H})$ $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ (ref.36) are $205.8(4) \mathrm{pm}, 174.6 \mathrm{pm}, 282.9 \mathrm{pm}$, and 107°; in $\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H})\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Mn}(\mathrm{CO})_{3} \quad$ (ref.38) are 203.5(10)pm, 198(8)pm, $333.0(2) \mathrm{pm}$ and $141(5)^{\circ}$; and in $\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H})\left(\eta^{5}-\mathrm{CO}\right) \mathrm{V}(\mathrm{CO})_{3}$ (ref.39) are $202.4(15) \mathrm{pm}, 206(18) \mathrm{pmm} 372.5(4) \mathrm{pm}$ and $173(8)^{\circ}$ respectively (Table 3).

The white crystalline compound $\left(n^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Nb}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(n^{5}-\mathrm{CO}_{2}\right)$ has been prepared and the x-ray structural analysis reported (ref.41). In this compound the Nb atom is combined with the SiMe_{3} moiety through the carbon atom of the CH_{2} group. The coordination sphere around the Nb atom 1 s built up of two n^{5}-bonded $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ rings, and the CO_{2} ligand which chelates to the Nb atom $(\mathrm{Nb}-\mathrm{O}=217.3(4) \mathrm{pm}$, and $\mathrm{Nb}-\mathrm{C}=214.4(7) \mathrm{pm}$, Table 3).

In two examples from Table 2, $\left[\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mathrm{H})\right]_{2} \mathrm{Mo}(\mathrm{CO})_{4}$ (ref.35), and $\left[\left\{\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{SMe})_{2}\right\}_{2} \mathrm{Ni}\right]^{2+}$ (ref.43), two $\mathrm{cp}_{2} \mathrm{Nb}(\mathrm{CO}) \mathrm{H}$ molecules are joined to the $\mathrm{Mo}(\mathrm{CO})_{4}$ group via the hydride bridges in the former, and the NiS_{4} group is bonded by planar methanethiolato bridges to two $\mathrm{CP}_{2} \mathrm{Nb}$ moieties in the latter, so that the $\mathrm{Nb}-\mathrm{Ni}-\mathrm{Nb}$ system is linear. The mean $\mathrm{Nb}-\mathrm{Ni}$ distance of 277.0(5)pm is one of the shortest found between Nb and a d-block element (Table 3). The other bond distances are not unusual.

By contrast, no metal-metal interaction has been found in $\left(\eta-\mathrm{C}_{4} \mathrm{H}_{\mathrm{g}}\right)\left(\mathrm{n}^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}\left(\mu-\mathrm{CS}_{2}\right) \mathrm{W}(\mathrm{CO})_{5}$ (ref.44). The $\mathrm{Nb}\left(\mu-\mathrm{CS}_{2}\right)-\mathrm{W}$ unit is almost planar, the CS_{2} group is n^{2}-bonded to the Nb through a $\mathrm{C}=\mathrm{S}$ Iinkage $(\mathrm{Nb}-\mathrm{S}=$ $252(3) \mathrm{pm}$ and $\mathrm{Nb}-\mathrm{C}=211(8) \mathrm{pm}$), and σ-bonded to W through the other S atom ($\mathrm{W}-\mathrm{S}=256(3) \mathrm{pm}$, Table 3). It is interesting to note that the $\mathrm{Nb}-\mathrm{S}$ and the $\mathrm{Nb}-\mathrm{C}$ distances are quite comparable to those found in ($\left.\boldsymbol{n}^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}\left(\mathrm{CS}_{2}\right)\left(\mathrm{CH}_{3}\right)$ (ref.22) and ($\left.\eta^{5}-c p\right)_{2} \mathrm{Nb}\left(\mathrm{CS}_{2}\right)(a l l y l)$ (ref.23) where the CS_{2} group is bonded to the niobium atoms in the same manner (Table 2) as in the above examples.

The mean $\mathrm{Nb}-\mathrm{C}$ (cp) distance of 239.2 pm for the heterobinuclear compounds (Table 3) is only about 1.1 pm shorter than the corresponding distance in the mononuclear biscyclopentadienyl compounds (Table 2), but shorter by 3.3pm than that of the monocyclopentadienyl derivatives (Table 1). Similarly, the $\mathrm{Nb}-\mathrm{C}$ (CO) mean length of 205.3 pm (Table 3) is somewhat shorter than 206.0pm (Table 1).

4. HOMOOLIGONUCLEAR COMPOUNDS

A. Binuclear Compounds

In the homobinuclear derivatives there are four main types of bridging between the two niobium atoms. In $\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO}) \mathrm{L}\right]_{2}$, where $\mathrm{L}=\mathrm{Ph}_{2} \mathrm{C}_{2}$ (ref.47), and $L=\left(\mathrm{CH}_{3} \mathrm{COOC}\right)_{2}$ (ref.48), two ($\mathrm{n}^{5}-\mathrm{cp}$) Nb CO moieties are bridged
through acetylene ligands with the $\mathrm{Nb}-\mathrm{Nb}$ bond distance of 274.2(5)pm in the former and 273.2(5) pm in the latter (Figure 9). These distances are the shortest found in related niobium compounds. The acetylenic group is not symmetrical with respect to the $\mathrm{Nb}-\mathrm{Nb}$ bond, the angle between the niobium atoms and the centre of the triple bond of L being 80° instead of 90° (ref.47). The bond distances and angles are given in Table 4.

Homobinuclear niobium compounds with two bridging ligands are the most common, and the crystal structure of $\left\{\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})_{2}\right]_{2}(\mu-5)_{2}\right\}$ (ref.54) is shown in Figure 10 as a representative example. In this binuclear compound the two (cp) $\mathrm{Nb}(\mathrm{CO})_{2}$ moleties are bridged with two sulphur atoms. This type of bridge has also been found in $\left[\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{NbS}\right]_{2}$ (ref.53) and $\left\{\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})_{2}\right]_{2}(\mu-\mathrm{SMe})_{2}\right\}_{2}$ (ref.54). Inspection of the data in Table 4 reveals that there is a tendency for the $\mathrm{Nb}-\mathrm{S}$ (bridge) to elongate as the $\mathrm{Nb}-\mathrm{Nb}$ distance shortens and the $\mathrm{Nb}-\mathrm{S}-\mathrm{Nb}$ angle closes. In

Figure 9. Crystal Structure of $\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})\left(\mathrm{CH}_{3} \mathrm{COOC}\right)_{2}\right]_{2}$. Reproduced with permission from Zh. Strukt. Khim. (ref.48).
$\left(n^{5}: n^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right)\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}_{2}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$ and its cationic form (ref.49), each Nb atom is coordinated to two cp ligands to form two clino-sandwich halves linked by two nitrene ligands. While the $\mathrm{Nb}-\mathrm{N}$ (bridge) distances are almost equal in both compounds (Table 4), the $\mathrm{Nb}-\mathrm{C}$ distances are somewhat longer in the former than in the latter, while the $\mathrm{Nb}-\mathrm{Nb}$ distances vary in the opposite sense. In the cationic form the $\mathrm{Nb}-\mathrm{Nb}$ bond distance of 292.1(1)pm is about 8.7 pm longer than that in the neutral form. This observation correlates well with the observed $\mathrm{Nb}-\mathrm{N}-\mathrm{Nb}$ bridge angle which is about 3° larger in the former than the latter.

The most unusual type of bridging is that involving $C_{5} \mathrm{H}_{4}$ ligands which has been reported in $\left[(c p) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NbH}\right]_{2}$ (ref.52). Two ($c p$) $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NbH}$ moieties are linked by two $\mathrm{C}_{5} \mathrm{H}_{4}$ ligands through one carbon atom of each. Interestingly, the $\mathrm{Nb}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ bridge distance of $223(2) \mathrm{pm}$ (mean value) is about 14 pm shorter than that of the non-bridged value of $237(2) \mathrm{pm}$. However, both are shorter than that of $\mathrm{Nb}-\mathrm{C}$ (cp) (Table 4). There are three crystallographically unique molecules which differ only slightly in bond lengths and angles.

There are a few examples in which one atom serves as the bridge between

Figure. 10. Crystal structure of $\left[\left(n^{5}-c p\right) \mathrm{Nb}(\mathrm{CO})_{2}\right]_{2}(\mu-S)_{3}$.
Reproduced with permission from J. Organomet. Chem. (ref.54).
two niobium atoms. In $\left.\left\{\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{NbCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-0)\right\}$ (ref.8) and $\left\{\left[\left(\eta^{5}-c p\right)_{2} \mathrm{NbCl}\right]_{2} \mathrm{O}\right\}^{2+}$ (ref.19), the bridge is an oxygen atom; in $\left\{\left(n^{5}-c p\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H}) .\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})_{3}\right\}$ (ref.39) it is a hydrogen atom; and in $\left(\eta^{5}: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right)(\mathrm{cp})_{2} \mathrm{Nb}_{2}(\mu-\mathrm{Cl})($ ref.50) it is a chlorine atom. In this series of monoatomic bridged compounds there is a tendency for elongation of the $\mathrm{Nb}-\mathrm{Nb}$ distance as the $\mathrm{Nb}-\mathrm{L}-\mathrm{Nb}$ angle opens (Table 4), which is very similar to the diatomic bridged derivatives. It is also noted that the $\mathrm{Nb}-\mathrm{C}$ (cp) distance elongates with the opening of the $\mathrm{Nb}-\mathrm{L}-\mathrm{Nb}$ angle. For example, the $\mathrm{Nb}-\mathrm{C}$ (cp) mean value and the $\mathrm{Nb}-\mathrm{L}-\mathrm{Nb}$ angle in the last compound (ref.50) are $236(4)$ pm and 79.6° respectively, and in the first compound (ref.8) are $243.7(4)$ pm and $171.8(1)^{\circ}$ respectively.

A possible fifth type, for which there is to date only one example consists of two $\left(\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})_{2}\right.$ moieties (Figure 10) linked by three sulphur atoms. Here the metal-metal distance of $355.5(1) \mathrm{pm}$ is longer than those found in the two sulphur bridge binuclear compounds, and the $\mathrm{Nb}-\mathrm{S}-\mathrm{Nb}$ angles and the $\mathrm{Nb}-\mathrm{S}$ distances follow the expected trend.

B. Trinuclear Compounds

Structural data are summarized in Table 4 for the trinuclear compounds. An X-ray investigation of $\left(\eta^{5}-c p\right)_{3} \mathrm{Nb}_{3}(\mathrm{CO})_{7}$ (ref.56) reveals that the compound consists of a trinuclear cluster with one of the seven CO ligands acting as a $\eta^{2}\left(\mu_{3}-C, \mu_{2}-0\right)$ bridge symmetrically facing a nearly equilateral triangle of niobium atoms (Figure 11). The metal-metal separations range between 304.4 and $332.0(2) \mathrm{pm}$, which are quite comparable to the $\mathrm{Nb}-\mathrm{Nb}$ bond lengths found in the binuclear derivatives (Table 4). It is interesting to note that the mean $\mathrm{Nb}-\mathrm{C}(\mathrm{cp})$ and $\mathrm{Nb}-\mathrm{C}$ (CO) bond distances of 239.3 and 206.3pm respectively are very aimilar to those found in the heterobinuclear derivatives (239.2 and 205.3 pm respectively). In another trinuclear compound, $\left\{\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}\left(\mu_{2}-00 \mathrm{CH}\right)\left(\mu_{2}-\mathrm{OH}\right)\right]_{3}\left(\mu_{3}-0\right)\right\} H$ (ref.57), the bidentate formate and hydroxyl groups, together with the tridentate bridging oxygen atom, link three niobium atoms located at the apices of an almost equilateral triangle with $\mathrm{Nb} . \ldots . . \mathrm{Nb}$ contacts of $313.6(4) \mathrm{pm}$ (2 x) and 314.9(4)pm. Each pair of niobium atoms are linked by two bridging ligands, formate and hydroxyl, and in addition there is an oxygen atom attached to all three metal atoms. Bach niobium also carries am-bonded cp ligand with a $\mathrm{Nb}-\mathrm{C}$ (cp) distance of $247(3) \mathrm{pm}$ (mean value). All three of the bridges are very similar in geometry, and the $\mathrm{Nb}-0-\mathrm{Nb}$ angle is close to tetrahedral (Table 4). The mean $\mathrm{Nb}-\mathrm{O}$ (triple-bridge) distance of 204(4)pwis about 14.0pm longer than the mean of the double-bridge species, 190pm (Table 4), as would be expected.

Figure. 11. Molecular structure of $\left(\eta^{5}-\mathrm{cp}\right)_{3} \mathrm{Nb}_{3}(\mathrm{CO})_{7}$. Reproduced with permission from J. Am. Chem. Soc. (ref.56).

Internuclear contacts of $333.4(6) \mathrm{pm}$ between niobium atoms have been found in another trinuclear niobium cluster, $\left[\left(\mathrm{Me}_{6} \mathrm{C}_{6}\right)_{3} \mathrm{Nb}_{3} \mathrm{Cl}_{6}\right] \mathrm{Cl}_{\ell}$ (ref.58), Table 4. Each pair of niobium atoms are bridged by two chlorine atoms, and the two Nb_{3} triangles are staggered with respect to each other. Each niobium atom also carries a m-bonded $\mathrm{Me}_{6} \mathrm{C}_{6}$ unit. There are three crystallographically independent $\mathrm{Nb}-\mathrm{C}$ distances, 234(3)pm, 253(3)pm, and 258(3) pm, respectively. The mean $\mathrm{Nb}-\mathrm{Cl}$ bridge distance of $247.7(2) \mathrm{pm}$ is shorter than the corresponding distances in the binuclear complex ($n^{5}: n^{5} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$) $(\mathrm{cp})_{2} \mathrm{Nb}_{2}(\mu-\mathrm{Cl})(\mathrm{ref.50)}$ of $256.5(4) \mathrm{pm}$.

campunds	$\begin{aligned} & \text { CRXSTAL } \\ & \text { GaASS } \end{aligned}$	$\begin{aligned} & \text { SPACE } \\ & \text { GROUP } \end{aligned}$	z	$\begin{aligned} & a(\mathrm{pm}) \\ & b(\mathrm{pm}) \\ & c(\mathrm{pm}) \end{aligned}$	$\begin{aligned} & \alpha\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	$\underset{(\mathrm{pm})}{\mathrm{M}-\mathrm{L}}$	$\begin{gathered} \mathrm{M}-\mathrm{M} \\ (\mathrm{pm}) \end{gathered}$	$\begin{aligned} & \mathrm{L}^{\prime}-\mathrm{MH} \\ & \mathrm{MH}^{\circ}-\mathrm{m}^{\prime} \\ & \left(^{\circ}\right) \end{aligned}$	REFF.
$\left[\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO}) \mathrm{F}_{2} \mathrm{C}_{2}\right]_{2}$	tr	pī	1	1043(2)	110.4(5)	$0^{\text {b }}$ 208(2)	274.2(5)	c	45-47
				960(2)	71.1(5)	C 211(2,1)			
				912(2)	114.1(5)	$\begin{array}{r} \text { C } 240(2,2) \\ \text { (cp)C } 245(2,6) \end{array}$			
$\begin{aligned} & {\left[\left(n^{5}-\mathrm{cp}_{\mathrm{p}}\right) \mathrm{B}\left(\mathrm{CDO}_{2} \mathrm{~F}_{2} \mathrm{C}_{2}\right]_{2} .\right.} \\ & . \mathrm{C}_{6} . \end{aligned}$	tr	pī	1	1191	109.3				45
				932	94.7				
				859	90.5				
$\begin{aligned} & {\left[\left(n^{5}-\mathrm{cp}\right)\right)(\mathrm{CD})\left(\mathrm{CH}_{3} .\right.} \\ & \left.\left..(\infty)^{2}\right)_{2}\right]_{2} \end{aligned}$	tr	PI (P1)	1	981(2)	99.5(5)	OC 211(2)	273.2(5)	d	48
				853(2)	105.9(5)	C 200 2,1)		108(1) ${ }^{\text {c }}$	
				826(2)	107.5(5)	c 235 2,0)			
						(cp)C $237(2,2)$			
$\left(n^{5} n^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right)(\mathrm{cp})_{2}$.	m	$\mathrm{P}_{1} / \mathrm{s}$	2	799.6(1)		Nbr^{204} (3)	283.4(5)	88(1);95(1)	49
$\mathrm{NH}_{2}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OCH} \mathrm{H}_{3}\right)$				1755.8(3)	96.21(1)	C 248(2,4)		$88(1,1)$	
				966.6(1)		(CP) C 248(2,11)			
[$\left(\pi^{5} \mathrm{n}^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right)(\mathrm{CP})_{2}$.	trg	${ }^{83}$	64	1761.8(5)	74.98(2)	$\mathrm{Nbr}^{\text {20 }}$ 204.2(6,13)	292.1(1)	87.5(2,2)	49
$\mathrm{Nb}_{2}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$.						C 245.0(7,21)		91.3(2,0)	
. HR_{4}. $\mathrm{CH}_{3} \mathrm{NO}_{2}$						(cp) $245.7(7,12)$			
$\left(n^{5}: n^{5}-\mathrm{C}_{5} \mathrm{~F}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right)(\mathrm{cp})_{2}$.	rh	$\mathrm{P}_{1} \mathrm{I}_{1} \mathrm{I}_{1}$		834.8(4)		$\mathrm{Cl}_{\mathrm{br}} 256.5(4,8)$	327.0(3)	not given	50
$\mathrm{Nb}_{2}\left(\mu-\mathrm{Cl}^{2}\right)$				917.3(4)		C 237(2,10)		79.2	
				2161(1)		(cp) C 236(4,6)			

TAFLE 4. (bontimued - 2)

capounds	CRYSTAL Cass	$\begin{aligned} & \text { SPACE } \\ & \text { GROUP } \end{aligned}$	2	$\begin{aligned} & a(p m) \\ & b(p m) \\ & d(p \mathrm{p}) \end{aligned}$	$\begin{aligned} & \alpha\left({ }^{\circ}\right) \\ & \beta\left({ }^{\circ}\right) \\ & \gamma\left({ }^{\circ}\right) \end{aligned}$	${ }_{(\mathrm{pm})}^{\mathrm{ML}}$	$\underset{(\mathrm{pm})}{\mathrm{M}-\mathrm{M}}$	$\begin{aligned} & \mathrm{L}^{\prime}+\mathrm{M}-\mathrm{L} \\ & \mathrm{M}-\mathrm{I} \mathrm{~A}^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$	REF.
$\left[\left(n^{5}-\mathrm{p}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{NbH}\right]_{2}{ }^{\mathrm{e}}$	or	$\mathrm{P}_{1} 2_{1} 2_{1}$	12	1538.4(4)		H 171(18,4)	$310.5(3,10)$	e	51
				2448.7(5)		$\left({ }_{4} C_{5}\right) \mathrm{Cb}^{\text {2 }}$ 223(2,2)		86.5(2,1.2)	52
				1287.9(3)		$\begin{gathered} \left(\mathrm{H}_{4} \mathrm{C}_{5}\right) \mathrm{C} 237(2,12) \\ (\mathrm{cp}) \mathrm{C} 240(2,5) \end{gathered}$			
$\left[\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{NbS}\right]_{2}$		$\mathrm{P}_{1} / \mathrm{c}$	2	1326.0(10)		$\mathrm{S}_{\mathrm{br}} 242.8(2,1)$	323.43(8)	96.496)	53
				796.4(7)	95.41 (8)	(cp)C $245.2(7,36$)		83.51(5)	
				823.0(10)					
[$\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\infty)_{2}\right]_{2}$.		$\mathrm{P}_{1} / \mathrm{c}$	4	872.9(2)		$\mathrm{s}_{\text {br }} 255.7(1,6)$	314.3(1)	73.7(0);87.3(2)	54
- $\left.(\mu-\mathrm{S})_{2}\right\}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)$.				1107.6(3)	90.07(3)	(OC)C $208.2(5,9)$		75.8(0,2)	
- $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$				1696.1(7)		(cp)C not given			
$\left[\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{B}(\infty)\right)_{2}\right]_{2}$.		C2	8	2936.8(12)		$S_{\text {br }} 256.2(16,17)$	316.4(9)	70.9(5);84.3(19)	54
- $\left.(\mu-\mathrm{ST})_{2}\right\}_{2}$.				892.6(5)	137.61(2)	(OC)C 204(5,8)		76.3(4,2)	
. $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$				2198.5(3)		(cp)C not given			
$\left\{\left[\left(n^{5}-\mathrm{cp}\right) \mathrm{Nb}(\infty)_{2}\right]_{2} .\right.$		$\mathrm{P}_{1} / \mathrm{C}$	4	872.9(2)		$S_{\text {br }} 255.7(1,6)$	314.3(1)	73.7(0);87.3(2)	54
- $\left.(\mu-\mathrm{S})_{3}\right\}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)$.				$1107.6(3)$	90.07(3)	(OC)C $208.2(5,9)$		75.8(0,2)	
. $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right.$)				1696.1(7)		(cp)C not given			
		C2	8	2936.8(12)		$\mathrm{Sbr}_{\text {br }} 256.2(16,17)$	316.4(9)	70.9(5);84.3(19)	54
- $\left.(\mu-\mathrm{SXE})_{2}\right\}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)$				892.6(5)	137.61(2)	(OC)C $204(5,8)$		76.3(4,2)	
. $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right.$)				2198.5(3)		(cp)C not given			
$\left\{\left[\left(n^{5}-\mathrm{qp}\right) \mathrm{Nb}(C)_{2}\right]_{2} .\right.$		C2/c	8	2624.4(9)		$S_{\text {br }} 260.0(3,80)$	355.5(1)	77.3(7);87.8(4)	54
- $\left.(\mu-\mathrm{S})_{3}\right\}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.				10120(5)	107.86(4)	(0C)C $210.0(12,15$)		86.3(1,3.3)	
.($\mathrm{CH}_{3} \mathrm{OCH}_{3}$)				1520.4(9)		(cp)C not given			

talle 4. (Continued - 3)

taile 4. (Continued - 4)

[^2]
C. Tetranuclear Compounds

To our knowledge, the only example of a tetranuclear niobium organometallic complex is $\left[\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right) \mathrm{NbCl}_{3}\right]_{4}$ (ref.59). The crystal structure (Figure 12) shows it to be a centrosymmetric tetramer, which may be regarded as a distorted double hexahedron with two corners misaing. Association is effected by two triple-bridge chlorine atoms ($\mathrm{Nb}-\mathrm{Cl}_{\ell}=252.3$, 281.6, and 294.5(5) pmi), and double-bridge chlorine atoms ($\mathrm{Nb}-\mathrm{Cl}=245.8$, $250.9,254.4$, and 257.9 pm). In addition, each Nb atom carries a diphenylacetylene ligand bonded through two carbon atoms. The remaining one position on $\mathrm{Nb}(1), \mathrm{Nb}(1)^{\prime}$, and two on $\mathrm{Nb}(2)$, $\mathrm{Nb}(2)^{\prime}$ are occupled by terminal chlorine atoms $(\mathrm{Nb}-\mathrm{C} \mathrm{\ell}=232.9,231.7$ and $232.4(5) \mathrm{pm})$. Thus each metal atom achieves a coordination number of seven. The mean $\mathrm{Nb}-\mathrm{Cl}_{\ell}$

Figure. 12. Molecular structure of $\left[\mathrm{NbCl}_{3}\left(\mathrm{PH}_{2} \mathrm{C}_{2}\right)\right]_{4}$. Reproduced with permission from Z. Anorg. Allg. Chem. (ref.59).
distance lengthens as the chlorine coordination number increases, being 232.3(5)pm for unidentate, 252.3(5)pm for bidentate and 276.1(5)pm for tridentate. This is the trend which would be expected, and the same effect is observed for the $\mathrm{Nb}-\mathrm{C}\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)$ bond distances. The mean value of the $\mathrm{Nb}-\mathrm{C} \ell$ (unidentate) bond length decreases with increasing degree of aggregation, i.e.: 247.8 pm (mononuclear), 241.4 pm (binuclear), 232.3 pm (tetranuclear). However, for the $\mathrm{Nb}-\mathrm{Cl}$ (bidentate) bond length the order differs such that binuclear (256.5 pm) > tetranuclear (252.3 pm) >trinuclear (247.7 pm). This may reflect the effects of large differences in the values of the $\mathrm{Nb}-\mathrm{Cl}-\mathrm{Nb}$ angles which are $79.2,110.3$, and 84.4° respectively in the bidentate case.

5. CONCLUSIONS

The data collected in this review represent the more than sixty organometallic compounds of niobium for which structural data is available at the end of 1984. The structures can be classified as mostly mono- and binuclear, with three examples of trinuclear and one example of tetranuclear. This is in contrast to the coordination compounds of niobium where a greater tendency to form cluster or chain structures has been observed (ref.3).

The electronic configuration of niobium in these derivatives shows a distinct trend of $d^{5} \gg d^{2}>d^{1} \sim d^{0}$, which again, by contrast, is the reverse to that observed for the coordination complexes (ref.3).
 $\left(n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$ (ref.25); ($\left.n^{5}-\mathrm{cp}\right)_{2} \mathrm{Nb}(\mathrm{CO})(\mu-\mathrm{H})\left(n^{5}-\mathrm{cp}\right) \mathrm{V}(\mathrm{CO})_{3}$ (ref.39) and $\left\{\left[\left(\eta^{5}-c p\right)_{2} \mathrm{Nb}(\mathrm{CO})\right](\mu-\mathrm{H})\left(\eta^{5}-\mathrm{cp}\right) \mathrm{Nb}(\mathrm{CO})_{3}\right\} \quad(\mathrm{ref} .39)$, in which two crystallographically independent molecules are present, differing by their degrees of distortion. There is even one example, $\left[\left(\eta^{5}-c p\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{NbH}\right]_{2}$ (ref.52) in which three such molecules are present. Such types of distortion have also been found in niobium coordination compounds (ref.3), and also in other metal complexes, especially copper(II). The coexistence of two (or three) species of the same coordination number of the central atom, but with different degrees of distortion within the same crystal, is typical of the general class of distortion isomers (ref.61).

A summary of the structural data for organometallic niobium compounds is given in Table 5. Inspection of the data reveals that:
(a) In general, the mean $\mathrm{Nb}-\mathrm{L}$ bond distance in mononuclear compounds with one cp ligand is somewhat longer than those with two cp ligands.
(b) The $\mathrm{Nb}-\mathrm{L}$ distances in homooligonuclear compounds are somewhat longer than those of the heteronuclear compounds.
TARE 5. SIMMARY OF THE NIOBTM-ATOM(LICAND) BOND DISTANCBS (pn) ${ }^{\text {a }}$

000 RD . ATOM (LICAND)	mannuciear		heitrobinuciear	gombinuciear
	MONO-cp	BIS - cp		
C(cp)	236.4-248.0(242.5)	234.0-246.0(240.3)	233.0-251.0(239.2)	$\begin{aligned} & 232.0-248.8(242.2) \\ & (234.2-250.0(241.2))^{\mathrm{b}} \end{aligned}$
$\mathrm{C}\left(\mathrm{H}_{2} \mathrm{C}_{2}\right)$	2160-229(220.6)	225-232(229)		$\begin{aligned} & 211-240(225) \\ & (221-206.2(205))^{\text {c }} \end{aligned}$
c(∞)	200-211.5(206.0)	202-204(203)	202.3-212.5(205.3)	$\begin{aligned} & 196-211.5(206.5) \\ & (202.0-211.7(206.3))^{\mathrm{b}} \end{aligned}$
C(00 bridge)			222.0-278.1(251.6)	$(196.6-227.8(215.7))^{\text {b }}$
0 (00 bridge)			226	$(221.2-223.8(222.5))^{\text {b }}$
$\mathrm{c}^{\text {d }}$	210-251(231)	227.7-234.6(230.6)		$\begin{aligned} & 209-235(222) \\ & (234-258(248))^{c} \\ & (221-225(223))^{e} \end{aligned}$
H		$\begin{aligned} & 150-176(164) \\ & 200^{f} \end{aligned}$	$(174.6-206.0(187.3))^{e}$	$(167-190(179))^{e}$

TARE 5. (Continued - 2)

COORD. ATOM (LICAND)	MONONUCLEAR		HETERCBINUCIEAR	HCMOBINUCLEAR
	MONO-CP	BIS- ${ }^{\text {cp }}$		
N	238			$(204-204.2(204.0))^{e}$
0		$\begin{aligned} & 163 \\ & (197-200(198.5))^{\mathrm{h}} \end{aligned}$	217.38	$\begin{aligned} & 188.0-192.6(189.7) \\ & 204^{1} \end{aligned}$
Cl	246.3-250.5(248.1)	246.4-248.3		$\begin{aligned} & 232.0-237.0(234.5) \\ & (231.7-232.9(232.3))^{\mathrm{c}} \\ & (255.7-257.0(256.5))^{\mathrm{e}} \\ & (246.6-249.9(247.7))^{\mathrm{b}, \mathrm{e}} \\ & (245.8-257.9(252.3))^{\mathrm{c}, \mathrm{e}} \\ & (252.3-294.5(276.1))^{\mathrm{c}, 1} \end{aligned}$
S		243.2-260.2(251.2)	$(246.8-252(249))^{e}$	$(242.8-264.8(253.7))^{e}$

[^3](c) The $\mathrm{Nb}-\mathrm{L}$ distances usually increases with an increase in coordination number of both the central atom and the donor atom.
(d) The mean $\mathrm{Nb}-\mathrm{C}$ bond distance, when the C donor atom is a part of a bior multi-dentate ligand, increases in the order: $\mathrm{Ph}_{2} \mathrm{C}_{2}$ (225pm) < $\mathrm{C}_{2} \mathrm{H}_{4}$ (229 pm) $<\mathrm{Ph}_{4} \mathrm{H}_{4}$ (238pm) < cp (242pm) $<\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ (243pm) $\mathrm{Me}_{6} \mathrm{C}_{6}$ (248pm).
(e) The mean $\mathrm{Nb}-\mathrm{C}$ bond distance, when the carbon donor atom is a part of a
 $\mathrm{PhCH}_{2}(227 \mathrm{pm})<\mathrm{C}_{2} \mathrm{H}_{5}(232 \mathrm{pm})<\mathrm{CH}_{3}$ (234pm).
(f) In mononuclear biscyclopentadienyl compounds where an $\mathrm{O}_{2}, \mathrm{~S}_{2}$ or CS_{2} group is bonded to Nb via two atoms, the $\mathrm{Nb}-\mathrm{L}$ distance follows the same order as the van der Waals radif (r) of the coordinate atoms, ie: $\mathrm{O}_{2}(\mathrm{r}=$ $1.52 \mathrm{pm}), \mathrm{Nb}-0=200$ and $197 \mathrm{pm} ; \mathrm{CS}_{2}, \mathrm{C}(\mathrm{r}=170 \mathrm{pm}), \mathrm{Nb}-\mathrm{C}=222.4 \mathrm{pm}$ (mean), $\mathrm{S}(\mathrm{r}=180 \mathrm{pm}), \mathrm{Nb}-\mathrm{S}=250.9 \mathrm{pm} ; \mathrm{S}_{2}, \mathrm{Nb}-\mathrm{S}=252.2 \mathrm{pm}$ (mean). The asymmetric side-on bonding of the $\mathrm{O}_{2}, \mathrm{~S}_{2}$, or CS_{2} ligands to a niobium atom causes a bond length increase in the order: 3 pm for $\mathrm{O}_{2} ; 7.7 \mathrm{pm}$ for $\mathrm{S}_{2} ; 28.5 \mathrm{pm}$ for CS_{2}. The values of $\mathrm{Nb}-0,198.5 \mathrm{pm}$ (mean), 3pm difference between the two $\mathrm{Nb}-\mathrm{O}$ distances, and $0-\mathrm{Nb}-\mathrm{O}$ angle of 43.6° which are found in peroxo-organometallics are within the range of those found for the coordinate complexes (ref.3), 196.1-206.6pm (200.1pm mean), 0.1-7.3pm (1.2 pm mean), and 43.0-44.3 (43.8 mean), respectively.

In heterobinuclear organometallics, the $\mathrm{Nb}-\mathrm{M}$ distance increases with increasing $\mathrm{Nb}-\mathrm{L}-\mathrm{M}$ angle, and at the same time the $\mathrm{Nb}-\mathrm{L}$ (bridge) distance also increases. While the $\mathrm{Nb}-\mathrm{C}$ (cp) distance remains constant (238 pm), the $\mathrm{Nb}-\mathrm{C}$ (CO) distance decreases as the $\mathrm{Nb}-\mathrm{M}$ distance increases. The $\mathrm{Nb}-\mathrm{M}$ distance is dependent on M, so that for similar types of structure the metal-metal bond length increases in the order $\mathrm{Zn}<\mathrm{Co}<\mathrm{Ni}<\mathrm{Fe}<\mathrm{Mn}<\mathrm{V}$.

The shortest $\mathrm{Nb}-\mathrm{Nb}$ distance of $273.2(5) \mathrm{pm}$ is found in the binuclear niobium organometalilcs, being about 3.6 pm longer than that found in the coordination compounds (ref.3). Usually, the $\mathrm{Nb}-\mathrm{Nb}$ distance increases with degree of aggregation, as does the variation between comparable organometallic and inorganic coordination oligonuclear derivatives. For example, the shortest $\mathrm{Nb}-\mathrm{Nb}$ distance of $304.4(2) \mathrm{pm}$ in trinuclear organometallic clusters is about 17 pm longer than that in the coordination compounds. Listed below are some factors which appear to influence the $\mathrm{Nb}-\mathrm{Nb}$ bond distance.
(i) Oxidation state of the central atom: it was found (ref.3) that the oxidation number three gives the highest $\mathrm{Nb}-\mathrm{Nb}$ bond order.
(1i) The number of bridging atoms: from the examples of one, two and three bridging atoms it was observed that two gives the most favourable $\mathrm{Nb}-\mathrm{Nb}$ bond.
(111) The $\mathrm{Nb}-\mathrm{L}-\mathrm{Nb}$ angle: usually the $\mathrm{Nb}-\mathrm{Nb}$ bond distance increases as the angle opens.
(iv) Steric effects of the coordinate ligands: increasing steric hindrance of the ligand elongates the $\mathrm{Nb}-\mathrm{Nb}$ bond, the effect being more noticeable in the organometallics than in the coordination complexes.

This survey together with the corresponding survey of the coordination compounds (ref.3), illustrates a rich variety of niobium complexes for which the structures have been defined by x-ray crystallography or related techniques in the gas phase. Despite the variability of the compounds, many systematic trends have been observed and outilned here. From these trends, directions for further inquiry are more apparent in this and related areas.

ACKNOWLEDGEMENTS

The authors wish to thank those who gave permission for use of their published figures, the Chemical Faculty of the Slovak Technical University for their cooperation in allowing M.M. to participate, and Carol V. Francis for assistance in formatting this presentation.

6. REFERENCES

1. I. Omae, Angew, Chem. Int. Ed. Eng1., 21 (1982) 889-902; Coord. Chem. Rev., 42 (1982) 31-54; 1bid. 51 (1983) 1-39.
2. R.C. Kerber, J. Organomet. Chem., 254 (1983) 131-142.
3. C.E. Holloway and M. Me1nik, submitted to J. Chem. Soc. Reviews.
4. W.A. Herrmann, W. Kalcher, H. Biersack, I. Bernal, and M. Creswick, Chem. Ber., 114 (1981) 3558-3571.
5. H.C. Aspinall, M.M. Robert, and S.J. Lippard, Inorg. Chem., 23 (1984) 1782-1784.
6. N.I. Kirillova, A.I. Gusev, A.A. Pasynskil, and Yu.T. Struchkov, Zh. Strukt. Khim., 15 (1974) 288-293.
7. J.C. Daran, K. Prout, A. De Cian, M.L.H. Green, and N. Siganporia, J. Organomet. Chem., 136 (1977) C4-C6.
8. K. Prout and J.C. Daran, Acta Crystallogr., Sect. B., 35 (1979) 2882-2888.
9. M.J. Bunker, M.L.H. Green, C. Couldwell, and K. Prout; J. Organomet. Chem., 192 (1980) C6-C8.
10. A.N. Nesmeyanov, A.I. Gusev, A.A. Pasynskif, K.N. Anisimov, N.E. Kolobova, and Yu.T. Struchkov, J. Chem. Soc., Chem. Commun., (1969) 277-278; A.I. Gusev and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1969) 294-303.
11. A.N. Nesmeyanov, A.I. Gusev, A.A. Pasynskil, K.A. Anisimov, N.E. Kolobova, and Yu.T. Struchkov, J. Chem. Soc., Chem. Commun., (1969) 739-740.
12. A.I. Gusev and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1969) 515-524.
13. N.I. Kirillova, N.E. Kolobova, A.I. Gugev, A.B. Antonova, Yu.T. Struchkov, K.N. Anisimov, and O.M. Khitrova, Zh. Strukt. Khim., 15 (1974) 651-658.
14. N.I. Kirillova, A.I. Gusev, A.A. Pasynskif, and Yu.T. Struchkov, J. Organomet. Chem., 63 (1973) 311-319.
15. N.I. Kirillova, A.I. Gusev, and Yu.T. Struchkov, Zh. Strukt. Khim., 15 (1974) 718-720.
16. N.I. Kirillova, A.I. Gusev, and Yu.T. Struchkov, Zh. Strukt. Khim., 13 (1972) 473-479.
17. N.I. Kirillova, A.I. Gusev, A.A. Pasynski1, and Yu.T. Struchkov, Zh. Strukt. Khim., 14 (1973) 868-874.
18. R.D. Wilson, T.F. Koetsle, D.W. Hart, A. Kvick, D.L. Tipton, and R. Bau, J. Am. Chem. Soc., 99 (1977) 1775-1781.
19. K. Prout, T.S. Cameron, R.A. Forder, S.R. Critchley, B. Denton, and G.V. Ries, Acta Crystallogr., Sect. B. 30 (1974) 2290-2304.
20. I. Bkouche-Waksman, C. Bois, J. Sala-Pala, and J.E. Guerchais, J. Organomet. Chem., 195 (1980) 307-315.
21. R. Mercier, J. Douglade, B. Viard, Acta Crystallogr., Sect. B., 37 (1981) 949-951.
22. R. Mercier, J. Douglade, J. Amaudrut, J. Sala-Pala, and J. Guerchais, Acta Crystallogr., Sect. B. 36 (1980) 2986-2991.
23. M.G.B. Drew and L.S. Pu, Acta Crystallogr., Sect. B., 33 (1977) 1207-1211.
24. L.J. Guggenberger, P. Meakin, and F.N. Tebbe, J. Am. Chem. Soc., 96 (1974) 5420-5427.
25. P.B. Hitchcock, M.F. Lappert and R.C. Milne, J. Chem. Soc., Dalton Trans., (1981) 180-186.
26. R. Mercier, J. Douglade, J. Amandryt, J. Sala-Pala, and J. Guerchais, J. Organomet. Chem., 244 (1983) 145-151.
27. L.M. Angelhardt, W.P. Leung, C.L. Raston, and A.H. White, J. Chem. Soc. Chem. Commun., (1983) 386-388.
28. R.R. Schrock, L.J. Guggenberger, and A.D. English, J. Am. Chem. Soc., 98 (1976) 903-913.
29. L.J. Guggenberger and R.R. Schrock, J. Am. Chem. Soc., 97 (1975) 6693-6700.
30. F. Naumann, J. Kopf and D. Rehder, J. Organomet. Chem., 267 (1984) 249-255.
31. R. Kergoat, M.M. Kubicki, J.E. Guerchais, N.C. Norman, and A.G. Orpen, J. Chem. Soc., Dalton Trans., (1982) 633-638.
32. Yu.V. Skripkin, O.G. Volkov, A.A. Pasynskii, A.S. Antsyshkina, L.M. Dikareva, V.N. Ostrikova, M.A. Porai-Koshits, S.L. Davydova, and S.G. Sakharov, J. Organomet. Chem., 263 (1984) 345-357.
33. A.A. Pasynskif, J.V. Skripkin, O.G. Volkov, V.T. Kalinnikov, M.A. Porai-Koshits, A.C. Antsyshkina, L.N. Dikareva, And V.N. Ostrikova, Izv. Akad. Nauk SSSR, Ser. Khim., (1983) 1207.
34. A.A. Pasynskif, Yu.v. Skripkin, L.L. Eremenko, V.t. Kalinnikov, G.G. Aleksandrov, V.G. Andrianov, and Yu.T. Struchkov, J. Organomet. Chem., 165 (1979) 49-56.
35. Yu.V. Skripkin, A.A. Pasynskit, V.T. Kalinnikov, M.A. Porai-Koshits, L. Kh. Minacheva, A.S. Antsyshkina, and V.N. Ostrikova, J. Organomet. Chem., 231 (1982) 205-217.
A.A. Pasynskif, A.S. Antsyshkina, Yu.V. Skripkin, V.T. Kalinnikov, M.A. Porai-Koshits, V.N. Ostrikova, and S.S. Sadikov, Zh. Neorg. Khim., 26 (1981) 2435-2442.
36. M.A. Porai-Koshits, A.S. Antsyshkina, A.A. Pasynskii, G.G. Sadikov, Yu.V. Skripkin, and V.N. Ostrikova, Koord. Khim., 5 (1979) 1103; Inorg. Chim. Acta, 34 (1979) L285-L287.
37. K.S. Wong., W.R. Scheidt, and J.A. Labinger, Inorg. Chem., 18 (1979) 136-140.
38. W.A. Herrmann, H. Blersack, B. Balbach, and M.L. Ziegler, Chem. Ber., 117 (1984) 95-106.
39. W.A. Herrmann, H. Biersack, B. Balbach, P. Heilknite, and M.L. Zeigler, Chem. Ber., 117 (1984) 79-94.
40. K.S. Wong, W.R. Scheidt, and J.A. Labinger, Inorg. Chem., 18 (1979) 1709-1712.
41. G.S. Bristow, P.B. Hitchcock, and M.F. Lappert, J. Chem. Soc., Chem. Commun., (1981) 1145-1146.
42. W.E. Douglas. M.L.H. Green, C.K. Prout, and G.V. Rees, J. Chem. Soc., Chem. Commun., (1971) 896-887.
43. K. Prout, S.R. Critchley, and G.V. Rees, Acta Crystallogr., Sect. B, 30 (1974) 2305-2311.
44. J. Amaudrut, J. Sala-Pa1a, J.E. Guerchais, R. Mercier, and J. Douglade, J. Organomet. Chem., 235 (1982) 301-313.
45. G.G. Aleksandrov, A.I. Gusev, and Yu.T. Struchkov, Zh. Strukt. Khim., 9 (1968) 333.
46. A.N. Nesmeyanov, A.I. Gusev, A.A. Pasynskif, K.N. Anisimov, N.E. Kolobova, and Yu.T. Struchkov, J. Chem. Soc., Chem. Commun., (1968) 1365-1366.
47. A.I. Gusev and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1969) 107-115.
48. A.I. Gusev, N.L. Kirillova, and Yu.T. Struchkov, Zh. Strukt. Khim., 11 (1970) 62-70.
49. D.A. Lemenovaki1, V.P. Fedin, Yu.L. Slovohotov, and Yu.T. Struchkov, J. Organomet. Chem., 228 (1982) 153-170.
50. A.A. Lemenovski1, V.P. Fedin, Yu.L. Slovohotov, A.I. Janovski1, and Yu.T. Struchkov, Koord. Kh1m., 6 (1980) 882-888.
51. L.J. Guggenberger and F.N. Tebbe, J. Am. Chem. Soc., 93 (1971) 5924-5925.
52. L.J. Guggenberger, Inorg. Chem., 12 (1973) 294-301.
53. Yu.V. Skripkin, I.L. Eremenko, A.A. Pasynskit, Yu.T. Struchkov, and V.E. Shklover, J. Organomet. Chem., 267 (1984) 285-292.
54. W.H. Herrmann, H. Biersack, M.L. Zeigler, and B. Balbach, J. Organomet. Chem., 206 (1981) C33-C37.
55. W.A. Hermann, M.L. Zeigler, K. Weidenhammer, and H. Biersack, Angew. Chem. Int. Ed. Engl., 18 (1979) 960-962.
56. W.A. Herrmann, H. Biersack, M.L. Zeigler, K. Weidenhammer, R. Siegel, and D. Rehder, J. Am. Chem. Soc., 103 (181) 1692-1699.
57. N.I. Kirillova, A.I. Gusev, A.A. Pasynskif, and Yu.T. Struchkov, Zh. Strukt. Kh1m., 14 (1973) 1075-1081.
58. M.R. Churchill and S.W.Y. Chang, J. Chem. Soc., Chem. Commun., (1974) 248-249.
59. E. Hey, F. Weler, and K. Dehnicke, Z. Anorg. Allg. Chem., 514 (1984) 25-38.
60. S. Baral, J.A. Labinger, W.R. Scheidt, and F.J. Timmers, J. Organomet. Chem. 215 (1981) C53-C56.
61. M. Melnik, Coord. Chem. Rev., 47 (1982) 239-261.

[^0]: a. Where more than one chenfically equivalent distance or angle is present, the mean value is tabulated. The first number in brackets is the e.s.d. and the second is the maximm deviation from the mean value. b. The chendcal identity of the coordinated atom or 1igand. C . Not givens d . The mean values of the angles are: $\mathrm{Ph}_{2} \mathrm{C}_{2}$ (centroid)-Nb-C0 $=86$ and $95(4)^{\circ}$; cp (centroid) $-\mathrm{Nb}-\mathrm{CO}=$ $114(4)^{\circ} ; \mathrm{cp}($ centroid $)-\mathrm{Nb}-\mathrm{C}_{2} \mathrm{Fh}_{2}($ centrold $)=117$ and $125(4)^{\circ} ; \mathrm{Ph}_{2} \mathrm{C}_{2}-\mathrm{Nb}_{2}-\mathrm{C}_{2} \mathrm{Ph}_{2}=107(4)^{\circ}$.

[^1]: a. Where more than one chenically equivalent distance or angle is present, the mean value is tabulated. The first number in brackets is the e.sod., and the second is the maximm deviation from the mean value.
 f. The value of the S-Nb-CD angle. g. The value of the $\mathrm{H}-\mathrm{Nb}-\mathrm{H}$ angles. $\mathrm{Cl}-\mathrm{Nb}-0=78.1(3,1)$ and $121.7(3,2)^{\circ}$; $\mathrm{Cp}_{\mathrm{p}}-\mathrm{Nb}-\mathrm{O}_{2}$ (middpoint) $=109.6(4,9)^{\circ}$; $\mathrm{Cp}-\mathrm{Ab}-\mathrm{Cl}_{l}=102.4(4,1.2)^{\circ} ; \mathrm{C}-\mathrm{Hb}-\mathrm{O}_{2}$ (mildpoint) $=100.1(3,2)^{\circ}$. j . The values of $\mathrm{S}_{2}-\mathrm{Nb}-\mathrm{S}_{2}$ and $\mathrm{S}_{2}-\mathrm{Nb}-\mathrm{S}$ angles. k . The values of $\mathrm{S}_{2}-\mathrm{Nb}-\mathrm{S}_{2}$ and
 values of $\left(\mathrm{H}_{4} \mathrm{C}_{2}\right) \mathrm{C-Nb}-\mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{4} \mathrm{C}_{2}\right) \mathrm{CHb}-\mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$, respectively. o There are two independent molecules. The value of of the n^{5} (ring) Nb-n (ring) angle.

[^2]: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in brackets is the a.s.d., and the second is the maximum deviation from the mean value.
 b. The chemical identity of the coordinating atom or ligand. c. Nb' $\mathrm{Nb}-\mathrm{cp}($ centroid $)=50(1)^{\circ}$ and $165(1)^{\circ} ;(0 C) \mathrm{C}-\mathrm{Nb}-\mathrm{cp}($ centroid $)=111(1)^{\circ}$. molecules. The $\mathrm{Nb}^{1}-\mathrm{Nb}-\mathrm{C}$ angles are 45.8° and $47.7(1)^{\circ}$ (mean). f. There are two crystallographically unique binuclear molecules. g. The value of $\mathrm{O}_{\mathrm{br}}-\mathrm{Nb}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{O}_{r}-\mathrm{Nb}-\mathrm{Cl}=88.67(8,1.08)^{\circ}$; $(\mathrm{H} 2 \mathrm{O}) \mathrm{O}-\mathrm{Nb}-\mathrm{Cl}=78.3(1,1.5)^{\circ}$; $\mathrm{Cl}-\mathrm{Nb}-\mathrm{Cl}_{l}=85.75(5,1.29)^{\circ}$ and 156.55(5,88) ${ }^{\circ}$. h. $\mathrm{Nb}-\mathrm{Nb}^{\prime}-\mathrm{Nb}^{\prime}{ }^{\prime}=60.00(5,4.43)^{\circ} ; \mathrm{Nb}^{\prime}-\mathrm{Nb}-\mathrm{Cbr}(00)=42.0(4,6.2)^{\circ} ; \mathrm{Nb}^{\prime}-\mathrm{Nb}-\mathrm{O} \mathrm{br}(C 0)=54.7(2,16.8)^{\circ} ; \mathrm{Nb}^{\prime}-\mathrm{Nb}-\mathrm{C}(10)=68.8-143.2(6)^{\circ}$. i. The
 $\mathrm{C}-\mathrm{Nb}-\mathrm{C}=37.6(7)^{\circ}$.

[^3]: a. The mean value is in parenthesis. b. The values for trinuclear. c. The values for tetranuclear. d. Excluding all ligands listed above, and also $n^{5}: \mathrm{n}^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{C}_{5} \mathrm{H}_{4}$. e . The values for a bridge atom (ligand). f. The value for $\mathrm{Nb}-\mathrm{H}\left(\mathrm{BH}_{4}{ }^{-}\right)$distance. g . The value for
 $\mathrm{Nb}-\mathrm{O}\left(\mathrm{CO}_{2}\right.$, bridge) distance. h . The values of bidentate O_{2} to the same Nb atom. i. The value for the triple bridging atom.

